// Twitter Cards // Prexisting Head The Biologist Is In: Unionids Along the Missouri

Saturday, February 11, 2017

Unionids Along the Missouri

Figure illustrating the river system of Nebraska. At top right a single position is indicated by concentric red circles.

Green is where Unionids were found in research.
Red is where I collected Unionid shells.
[Figure derived from those at link.]
Several years ago, my brother and I went on an overnight road-trip to Nebraska. Why? ...well, mostly because it was there and it was close enough to make an overnight trip. Among other memories, one of the highlights was hanging out on the banks of the Missouri River at Decatur.

As we wandered around the river edge, we found numerous large mussel shells. I collected a few, with intentions of identifying the species that made them at some later time.



Fast forward a few years and I'm digging through some boxes in the basement. I'm not sure what I was looking for, but the shells grabbed my attention. It was time to figure out what they were.

I had collected two pairs of shells. One pair was thinner and the other was thicker. One of the thinner shells broke while in storage. The remaining shell is 13.8 cm long, 8.0 cm tall, and 2.6 cm deep. After some looking around at various documents, I realized I could identify these thinner shells as a specimen of a Unionid species called the Great Floater (Pyganodon grandis). The species seems to get this name because of the penchant for their shells to float away when one has died and has begun to rot.

Four different views of a large freshwater mussel shell. The shell is very thick, showing signs of damage and healing over its long life.
Thick-shelled Unionid. Lower-right
is a closeup of growth ridges.
The second pair of shells was much thicker. They're similar in size to the previous shell (12.6 cm x 7.7 cm x 3.5 cm). The shells both look scarred and aged. The best way to determine the age of Unionid shells involves destructive dissection of the shells. Instead, I used the less accurate method of counting the yearly growth ridges. I estimated the shell at ~140 years old (which is well within the age range known for these animals), but I still haven't had any luck with an ID.

Through the process of trying to identify these shells, I accidentally identified a shell I had found in central Texas when I was in highschool. This shell is from another Unionid that is called the Threeridge (Amblema plicata). I had long ago given up on finding the name of this shell, so this was a cool bonus.



Unionids have all sorts of interesting biology. Like most bivalves, they make their living filter feeding water as they hide buried in the sediment. The live in freshwater river systems worldwide, with the most diversity present in North America. Adult Unionids can only travel very slowly by shifting their foot, so you would think they'd have a difficult time traveling up rivers. The Unionids have developed a very special trick to get around this limitation. They use fish to transport their babies.

Unionid larvae (called glochidia) spend some time as a parasite in the gills of fish. The fish can travel upstream or downstream, much further than the adult could ever crawl. After some interval, the glochidia drop from their fishy host and start living the traditional life of a c.

Five images showing Unionid mussels with various features they use to attract fish which are hosts to the larvae of the mussel. Most show fleshy extensions that look like worms or small fish. At bottom-right is a shell edge which has sharp inward pointing teeth growing along it.
Images from unionid.missouristate.edu
How the glochidia get into a fish is kinda awesome. The general strategy is to convince a fish (of an appropriate species) to inhale a bunch of the babies. How they do this varies all over the place. The females of some Unionid species develop large flanges/flaps of tissue that are shaped and colored to mimic small fish or other aquatic creatures. These organs have musculature and so can even move in a realistic manner, which all aids to draw the interest of fish. When the fish come close to try and get a meal, they instead get a mouthful of larval bivalves. Other Unionid species release their larvae in sacs (ovisacs) that attach to rocks or the parent shell and are buffeted around by the current. These sacs look like little fish, again drawing the interest of fish looking for a meal. One group of Unionids (the Epioblasma) even bites onto the heads of fish (using tooth-lined shell edges), so they can shove their babies directly into the fishes' mouths.



These species are long-lived, but sensitive to environmental disruption. They can't survive in a river that dries up and are they're unable to get out of the way when water quality is impaired by human activities. Because of this sensitivity, there are legal restrictions on their harvest (in every state I've checked).

All the shells I have were collected on dry land, which sidesteps the legal restrictions designed to protect the live animals from harm. Frankly, I couldn't imagine collecting living animals to get their shells. You have to respect your elders, even if they happen to be living on the bottom of a river.


References:

No comments:

Post a Comment